Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces

نویسندگان

  • Didier Devaurs
  • Thierry Siméon
  • Juan Cortés
چکیده

Sampling-based algorithms for path planning have achieved great success during the last 15 years, thanks to their ability to efficiently solve complex high-dimensional problems. However, standard versions of these algorithms cannot guarantee optimality or even high-quality for the produced paths. In recent years, variants of these methods, taking cost criteria into account during the exploration process, have been proposed to compute high-quality paths (such as T-RRT), some even guaranteeing asymptotic optimality (such as RRT*). In this paper, we propose two new sampling-based approaches that combine the underlying principles of RRT* and T-RRT. These algorithms, called T-RRT* and AT-RRT, offer probabilistic completeness and asymptotic optimality guarantees. Results presented on several classes of problems show that they converge faster than RRT* toward the optimal path, especially when the topology of the search space is complex and/or when its dimensionality is high.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling-based Roadmap Planners are Probably Near-Optimal after Finite Computation

Sampling-based motion planners have proven to be efficient solutions to a variety of high-dimensional, geometrically complex motion planning problems with applications in several domains. The traditional view of these approaches is that they solve challenges efficiently by giving up formal guarantees and instead attain asymptotic properties in terms of completeness and optimality. Recent work h...

متن کامل

Predicting Optimal Solution Cost with Bidirectional Stratified Sampling

Optimal planning and heuristic search systems solve state-space search problems by finding a least-cost path from start to goal. As a byproduct of having an optimal path they also determine the optimal solution cost. In this paper we focus on the problem of determining the optimal solution cost for a state-space search problem directly, i.e., without actually finding a solution path of that cos...

متن کامل

Sampling-based algorithms for optimal path planning problems

Sampling-based motion planning received increasing attention during the last decade. In particular, some of the leading paradigms, such the Probabilistic RoadMap (PRM) and the Rapidly-exploring Random Tree (RRT) algorithms, have been demonstrated on several robotic platforms, and found applications well outside the robotics domain. However, a large portion of this research effort has been limit...

متن کامل

Optimal Path Planning using RRT* based Approaches: A Survey and Future Directions

Optimal path planning refers to find the collision free, shortest, and smooth route between start and goal positions. This task is essential in many robotic applications such as autonomous car, surveillance operations, agricultural robots, planetary and space exploration missions. Rapidly-exploring Random Tree Star (RRT*) is a renowned sampling based planning approach. It has gained immense pop...

متن کامل

Efficient asymptotically-optimal path planning on manifolds

This paper presents an efficient approach for asymptotically-optimal path planning on implicitly-defined configuration spaces. Recently, several asymptotically-optimal path planners have been introduced, but they typically exhibit slow convergence rates. Moreover, these planners can not operate on the configuration spaces that appear in the presence of kinematic or contact constraints, such as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014